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ABSTRACT

A numerical method of calculating deformations and

stresses in an elastic solid propellant grain having a circular perfora-

tion and flat ends and bonded to a rigid motor case was used to calcu-

late stresses and deformations caused by axial acceleration loading.

Two grain end situations were considered: both ends free and one end

free with the other bonded to the motor case. The dimensionless dis-

placements of critical parts of the grain were calculated as functions of

the inner-to-outer radius ratio a, the length-to-diameter ratio X, and

Poisson' s ratio v. The dimensionless radial and shear stresses at the

propellant-motor case interface were also calculated as well as the

percentage of total load carried by the bonded end for grains bonded on

one end.

The equations of motion of a viscoelastic solid were

reduced to a single Poisson equation by assuming that the displacements

do not vary with the coordinate direction along which the acceleration

is applied. A general solution to this equation was obtained for hollow

cylinders of infinite length having generators parallel to the direction

of acceleration and transverse cross sections with p(p ; 0) axes of

symmetry. The solution was applied to solid propellant grains of

infinite length having star-shaped internal perforations to determine

the stresses and deformations caused by axial acceleration under the

conditions of zero displacement at the outer boundary and zero surface

stresses at the inner boundary.
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DEFORMATIONS AND STRESSES IN AXIALLY ACCELERATED

CASE-BONDED SOLID PROPELLANT GRAINS OF FINITE LENGTH

Charles H. Parr

1. Introduction

A numerical method for calculating deformations and

stresses in an elastic solid propellant grain of finite length having a

circular perforation and flat ends and bonded to a rigid motor case

was reported previously'. While the method considered internal

pressure, shrinkage, and axial acceleration loads, the calculations

presented were concerned primarily with shrinkage loads. Addi-

tional calculations using this method have been made for axial acceler-

ation loads. Two end conditions were considered: two free ends, and

one fixed and one free end. As pointed out previously, it is possible

to present results in dimensionless form in terms of only three

parameters: the inner-to-outer radius ratio a, the length-to-diameter

ratio \, and Poisson' s ratio v.

2. Correction to Previous Report

An incorrect statement was made on page 11 of

Report P-61-17 concerning the state of stress at the midsection of a

cylinder of finite length which is geometrically symmetrical about

the midsection and loaded by axial acceleration. It was stated that the

stress condition in the midsection plane was exactly the same as in an

infinitely long cylinder. Actually, at this plane the radial displace-

ment, normal stress, and normal strain are zero as in the infinite

cylinder as will be shown below. The axial displacement and shear

stress and shear strain at the midsection plane, however, cannot be

evaluated from considerations of the midsection alone and must depend

on other properties of the cylinder, specifically, the length.

'Rohm & Haas Company, Quarterly Progress Report on Engineering

Research, No. P-61-17, June 1962.
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Consider the accelerated cylinder in Fig. 1. If the

acceleration is considered positive as shown, a negative acceleration

must be equivalent to an acceleration in the opposite direction.

Because linear analysis is used, a simple reversal of the signs of

the stresses, strains, and displacement results if the direction of
acceleration is changed. Consideration of this point leads to the con-

clusion that the radial displacement along the geometric line of
symmetry m - m must be zero. If the radial displacement is zero,

the radial and circumferential strains are zero along this line by

definition.

To demonstrate that the axial strain is zero is more

difficult. From the equation for radial displacement, Eq. 9 in Report

P-61-17 (neglecting shrinkage terms), namely

Up P = _ [,+ [ I-,V] J - Vp¶1Z , (9)

there results from setting the displacement equal to zerol

L + [-V]÷ V P 1 (34)
l+v (4

The first and second derivativns of Eq. 34 are

P+ [ V,, 11 2 v n ( 35)

and

a ,+ I1 v - .1 (uI (36)
apZ 2 8p 1 + V

Addition of the field equations given by Eqs. 7 and 8, namely

- 0 +(7)
Eutn ar P n

| 'Equations are numbered consecutively with Report P-61-17.
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and

-+ (8)
8pz pP 8 nz 8 TIz

and substitution of Eqs. 35 and 36 gives

S. , "_L_ .(37)
8 nz 8 1,z

Because of the anti-symmetric quality of the radial displacement about

m - m for the axial acceleration loading, it can also be concluded that

azu
- = 0 (38)8 •z

along m - m, i. e., there is an inflection point in the radial displace-

ment at m - m. Eqs. 37, 9, and 38 when combined result in

0 = a - 0 (39)
8 11z 8112

along m - m. Eqs. 7 and 8 now yield for the general form of • and 4i

along the line m - m

A p2 + B (40)

and

C p Z+ D , (41)

which can be evaluated with aid of the boundary conditions

U :Pu - 0 at p . I

and

apr :a ' 0 at p a

to give

*:22z Pj- (42)

and

ý : .. [2 , 12 (43)
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where 1 is the axial coordinate at m - m. By substituting Eq. 42 and

43 into the expression for axial strain, namelv

I - + 2 a + IZ , (44)

the axial strain can be found to be zero along m - m. Thus the three

normal strains, and hence also the three normal stresses, are zero

at the midsection as well as the radial displacement.

Physical considerations similar to those made pre-

viously for the radial displacement will establish that under axial

acceleration not only the radial displacement but all of the normal

strains and stresses as well are anti-symmetric functions with respect

to the midsection, while the axial displacement shear stress, and

shear strain are symmetric functions. Thus, it is possible to deduce

the complete solution of a cylinder which is geometrically similar

with respect to the midsection by considering only half of the

cylinder in the numerical solution, with resulting significant savings

in time and cost.

3. Alternative Method for Obtaining Axial Displacements

In Report P-61-17, the axial displacement relation,

Eq. 10, was obtained by integration of the axial strain ETi

l+v Er ) d2 d+v + v 2 + p) 0
u] - P ap ýO a p 1

It was necessary to obtain the function f( p) by an integration of shear

strain relations when the axial displacement was not known in some

radial plane.

An alternative method of obtaining axial deflections

from the integration of the shear strain relation has proven more

useful than Eq. 10. Elimination of -y from the shear strain relation

8u Ou 2rl+1 ]

S+ V I (45)

and the radial displacement relation

U [ 1[+V] {, + [l-v]I) - p6
- Vpn Z (9)
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results in

P (A - [l-vI + V'Pz (46)

which, upon integrating subject to the condition u,, 0 at p = I,

produces

U [l'pz] _[l+v ( -z dp (47)
PP

4. Results of Calculations for Axial Accele ration: Loading

4. 1 Two Ends Free

Calculations were made to obtai': stresses ar.,d dis-

placements in a grain having both ends free ( free--free cylin-der)

subjected to axial acceleration loading ( see Fig. 1) . Resuts could

be presented in dimensionless form with only three independert

parameters - the radius ratio a a , the length-to-diameter ratio

SN , and Poisson' s ratio v. The displacemerts are represented

in dimensionless form as

uE uEr and -

bz/yg b 2 yg

where u r and uz are the actual radial and axidi displacemercs

respectively, E is the elastic modulus of the propellant, ý is the

propellant density, and g is the axial acceleration. On mOst of the

figures the points actually calculated are marked bi appropriate

symbols so that the interpolation and extrapola'Ao:'i of tlie curves

would be evident. On some figures, symbols were omitted for

clarity.

The dimensionless deflections A, B, ard C defir.ed

in Fig. 1 are plotted in Figs. 2 through 7 as furctions of a and N. for

Poisson' s ratio v = 0. 5. The midsection displacement A approaches

the displacement of an infinite cylinder for large length-to-diameter

ratios as shown in Fig. 2. Note in Fig. 7 that the deflection C is not
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results in

LPnV ; - [l-VIj p(6

which, upon integrating subject to the condition 0 at p ,

produces

U.: = - "- [l-p" ) -l-+vI L P - [-V dp . (47)

4. Results of Calculations for Axial Acceler.itior_: Loading

4. 1 Two Ends Free

Calculations were made to obtal'_ stresses ai-.d dis-

placements in a grain having both ends free ( free.free cvli'ider)

subjected to axial acceleration loading ( see Fig. 1) . ReslAts could

be presented in dimensionless form with or.ly three indepe.-der.t

a
parameters - the radius ratio a = , the length-to-diameter ratio

I-z - , and Poisson's ratio v. The disp!acements are represented

in dimensionless form as

uE uEr z
-_ and

b•yg bZYg

where u r and u are the actual radial and axi-jl. displlcemer;:s

respectively, E is the elastic modulus of the Propellant, - is the

propellant density, and g is the axial acceleratio-.. 0:. m-:st of the

figures the points actually calculated are marked bi apir)oDr; i.te

symbols so that the interpolation and extrapola:io- of the curves

would be evident. On some figures, symbols 'wc:re omitted for

clarity.

The dimensionless deflections A, B, ard C defired

in Fig. 1 are plotted in Figs. 2 through 7 as fuctions of a and \ for

Poisson' s ratio v = 0. 5. The midsection displacement A approaches

the displacement of an infinite cylinder for la-&rge length -to-diameter

ratios as shown in Fig. 2. Note in Fig. 7 that the deflection C is !-ot
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a monotonic function of a. The variation of A, B, and C with Poisson's

ratio for particular values of a and 4 is shown in Figs. 8, 9, and 10.

Figures 11 through 14 and Figs. 15 through 18 illustrate

the effect of \ and a un the radial and shear stress respectively at the

propellant motor case interface for a Poisson' s ratio of v % 0.5. A

singularity in the stress distribution occurs at the corner formed by

a free end and the motor case. Thus, any stresses calculated near

these points are physically meaningless because any real material

will deviate from the assumed model. In the figures illustrating stress

distribution, the stresses near this singularity are indicated by dashed

lines. The effect of this singularity on the numerical solution has not

been fully evaluated but is believed to be small even at small dis-

tances from the singular point. The effects of Poisson' s ratio on the

displacements near the end are complex, but at points removed from

the ends the stresses are not highly dependent on Poisson' s ratio.

4. 2 One End Fixed

For cylinders having one end bonded (fixed-free

cylinder) , as illustrated in Fig. 19, results similar to those obtained

for the free-free cylinders are presented in Figs. 20 through 43. Note

that the proper interpretation of the sign of the deflection and stresses

depends on the direction of acceleration while the magnitude is

independent of the direction of acceleration. Figs. 20 through 25

demonstrate the variation of the quantities A, B, and C as defined in

Fig. 19 for various values of X and a but only for Poisson' s ratio of

0. 5. Figs. 26 through 27 demonstrate the variation of A, B, and C

with Poisson' s ratio. Although these figures are not a complete

parameter study, they do indicate the complex nature of the depend-

ence on Poisson' s ratio.

Figs. 29 through 33 show the load carried by the end

bond as the percentage of the total load carried by the motor case in

accelerating the grain. Figs. 29 and 30 are crossplots in a and N of

this data for v a 0. 5. Figs. 31 through 33 illustrate the dependence

on Poisson' s ratio.
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DEFORMATION OF VISCOELASTIC CYLINDERS OF

INFINITE LENGTH AND ARBITRARY CROSS SECTION

UNDER AXIAL ACCELERATION LOADS

Charles H. Parr

1. Introduction

A knowledge of the stresses and deformations in

solid propellant rocket motors due to axial acceleration loads is

necessary for analysis of motor structural integrity. An analysis

of the effects of finite length on the stresses and deformations in pro-

pellant grains having circular perforations under axial acceleration

is presented in another section of this report. This section deals

with the axial acceleration of propellant grains of infinite length whose

internal perforations are not circular but have a number of axes of

symmetry, such as the common types of star perforations.

The equations of motion of a viscoelastic solid were

reduced to an uncoupled set by assuming that the deformations do not

vary with the coordinate direction along which the acceleration is

applied. These results were then applied by the use of conformal

mapping to axially accelerated cylinders with cross sections having p

axes of symmetry (p 4 0) . A closed form solution was obtained for

the axial displacement and then evaluated for a particular set of

boundary conditions and a particular geometry.

2. Equations of Motion

The equations of motion for a viscoelastic solid may

be shown to be1

K + G IoaetI I G x-,o)] + X a,
T 2-RL"at?

'This formulation, with the exception of acceleration and body force

terms, has been given by Elder 11] .
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K+ [ G [Vv(t)] +Y: y- , and (2)T y a tz

( + GI 8 e(t) + G [Vw(t)] + Z= (3)T az 8 ta

where the functional notation of Volterra 1 2]

G[f(t)] .- f(t) G(0) + f(t 1 ) - [G(t-t 1 ]dt, (4)

is used. Here

G( t) a viscoelastic shear relaxation modulus,

K(t) a viscoelastic bulk relaxation modulus,

u, v, w . displacements in direction of Cartesian coordinates,
x, y, z respectively

y material density,

t - time,

x 2 =yZ 8z+
8xz ay 2 8z 2

e - + + 2 - dilatation, and
ax ay az

X, Y, Z = body forces in the x, y, z, directions, respectively.

It should be noted that

G [V u( t)] :V? G[u(t)] . 5)

Under the restriction that u, v, and w are invariant

with z, Eqs. 1, 2, and 3 reduce to

'The displacements u, v, and w are, in general, functions of x, y, and

z as well as t. For brevity, the dependence on the coordinates is not

expressed in function form but the dependence on t is sometimes

expressed to aid in expressing the Volterra and Laplace functionals.
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(' + 8ýt + X 82 (6)+ LT x z ax ay ; X2 ax y ? a t 2

KI+ G zu(t) + + G + Lv + Y ý (7)

and

G w(t) + 2w(t) Z Ow 8)

8x2  y2  I at 2

Eqs. 6 ard 7 are now uncoupled from Eq. 8. Eqs.

6 and 7 correspond to the usual plane strain equations of visco-

elasticity and may be solved separately for any given boundary condi-

tions and body forces. Henceforth, consideration will be given to the

solution of Eq. 8 with geometries limited to cylizaders having genera-

tors parallel to the z-axis. Solutions for the coupled equations, Eqs.

6 and 7, will not be considered in this analysis but can be superposed

with solutions of Eq. 8. Note, however, that for a loading of only

acceleration in the z-direction, the solution of Eqs. 6 an~d 7 is trivial,

i.e., uxv=0.

Body forces will be restricted to the weight of the

body. It is evident that the weight per unit volume can be expressed

as the product of the density -y and a pseudo acceleration, the

gravitional constant, and can thus be ix.cluded in the right side of

Eqs. 6, 7, and 8. Consequently the body force will no longer be

explicitly considered.

Boundary conditions applicable to Eq. 8 may consist

of the specification of the displacement or shear stress as prescribed

functions of time. Typically these may take the form

w(t) = f(t) onB 1  (9)

and

Tsz(t) : h(t) onB, , (10)
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where B, and Bz are the boundaries of a hollow cylindrical body and

s denotes the normal to the surface.

The displacement w can be considered to consist of

two parts, w, and wz, where wl, a function of time only, is the dis-
placement of boundary B, and w2 is the displacement relative to the
boundary B1. The displacement w, may be associated with a rigid

body displacement. The displacement w2 is associated with the defor-
mation of the cylinder material and is a function of the space

coordinates x and y and of time t. The displacement w2 will be further

restricted by neglecting dynamic effects so that the magnitude of the
variation of w2 with time is much less than that of w, . Thus

82 w azw1

at 2  at 2

and since

aw ___

ay

Eq. (8) may be written

a2F t + 8W2 1 Z, t)w
St)(11)

Laxz ayz at?

Specification of the overall body acceleration may
now be made independently of the displacements associated with

deformations.

To obtain a solution to Eq. 11, it is convenient to use

the Laplace transform with respect to time to reduce the problem to
an associated elastic problem. Applying the Laplace transform to the

functional G [wz( t)] there results

L ( [ 2(t)] =G(O) _W2(p) + _W2(p) I p G(p) - G(O)]

z p •2 (p) r(p) , (12)

where p is the transform variable, not to be confused with the

number p of axes of symmetry of the transverse cross section.
Expressing the acceleration of the body as a specified function A( t),
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a8wI(t) - A(t) . (13)

atz

whe re

A(t) 0, t<0

Eq. 11 becomes

S?(p) (14)

or

ZA(p) ypx(p) 7(p) (15)

since

p7 (p)

where J(p) is the Laplace transform of the shear compliance.

Taking the inverse Laplace transform, there results

VaL-'{Wa(p)) = L-' ( ypX(p) T(p)) 1 (16)

where L'-1 ) denotes the inverse Laplace transform. Letting

S= 1 ý";(P)> )(17)ý- N •PTOp x(p))

Eq. 16 becomes

P_! + e_! = 1(18)
8xz Byz

Note that 4j is a function of x and y only and is not a function of time.

Eq. 18 is valid regardless of the time dependence of the acceleration

and regardless of the time dependence of the shear compliance.

Further it can be seen from Eq. 18 that the displacement function 41

defined by Eq. 17 depends solely on the space coordinates x, y and the

boundary conditions.
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If the acceleration A( t) is applied as a step function,

A(t) = gH(t)

where H(t) is the unit step function and g is a constant, then

X(p) u g/p, and

L:1 Cwp) - (19)
L-1 (gYI(p)} g t

Thus for a step function in the acceleration, the axial displacement

at each point is directly proportional to the creep compliance.

3. Application to Star Geometries

The solution of Poisson' s equation, Eq. 18, was con-

sidered for star geometries which are applicable to solid propellant

grains. Consider the shape shown in Fig. 1. The internal perforation

consists of p branches or star points and the external boundary is

circular. Wilson [ 3, 41 demonstrated the mapping of such regions by

Fig. I Typical star perforated propellant grain.
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fitting the internal perforation with a mapping transform which maps

the star shape in the z* or real plane1 onto the unit circle in the • or

transformed plane. Likewise, the circle defined by p -- r in the ,

plane corresponds to an irregular line in the z* plane. However, if r

is sufficiently large the corresponding contour in the z*-plane is

sufficiently regular to be considered circular.

The mapping function used by Wilson is given by

B C D

where p is the number of axes of symmetry of the grain cross section.

Kantorovich and Krylov [ 5] show that under such a transformation,

the Laplace operator transforms into

+ (- --= + - , (21)a ? a x z I,., , ( r..) 1I 2 a m g z 8 T

where w'( ) is the derivative of w with respect to t. Expressing Eq.

21 in polar coordinates by means of

+: i+i1=:pe

the Laplace operator becomes

( + -- . -- + + 2) (22)
ax a z By2 ,+ (t) I zap p P p P2 aea

Using Eq. 22, Eq. 18 may be written

S+ 1 841 +± 1 =l(+)ja (23)

apz Prp P2 aez

Now consider the general form of w( •),

'To avoid confusion with the z coordinate, an asterisk is used to

denote the complex variable z* = x+ iy
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Sn, t- n-np (24)

Then

I-np) Cn .np

or

='•n .- [Cos npe - i sin npe] (25)

P np

Then

S,((1-n) Cn cos np

np

I• (1-np) C , 26
+ n sin npG (26)

1 ~p np

or, upon expanding,

In--• 2  m (1-np)(1-mp)Cn Cm cos mpe cos npOi~~ ~ •() (m+n) p

n+. ~ (1-np) (1-mp) Cn Cm sin mp@ sin np, (27)

Pw(m+n) 
p

which simplifies to
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I'()Z n(l-np)(l-mp)CnC cms( m-n) pe .n(28)

Let k- m-n. Then, after considerable manipulation, Eq. 28 may be

rewritten in the form

(1-np)z C?

+ 22)Z = : 

npP 

2np n)(1-np-kp)C 

C+ 2 cos kpO P (2n+klp n"~ (9

The solutions to Laplace' s equation which will form

the complementary part of the solution to Eq. 23 are well known

Those forms suitable for the problem under discussion are

I' (Hk pkp + Lk P kp) cos kp@ + Uin p + V (30)

where Hk, Lk, U, and V are to be determined from the boundary

conditions.

The particular solution of Eq. 23 may be found by

considering

Mz M nk pa cos kpQ . (31)

Substituting this relation together with Eq. 29 into Eq. 23 and equat-

ing coefficients of cos kpe results in

'See, for instance, Moon and Spencer [ 61 , p. 14.
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a -. 2 -(n+ k) p

C n Cn+k
Mnk0 , (32)

and

Ca
MnMno --4-

The particular solution is then formed by a double series in n and k

of terms given by Eq. 31.

The complete solution is then given by adding the com-

plementary and particular solutions which results in

•- -n 2(1-np) + U In p + V

+ H pkp + L -kp + CnCn+k 2-(2n+k)+ P(coj kp (33)

This is the solution for the axial displacement function ýi in an infinite

cylinder whose contour in the transverse cross section can be defined

by a mapping function of the form Eq. 20 (or Eq. 24) .

4. Satisfaction of Boundary Conditions

Consider the boundary conditions

w(x,y,t) : w1(t) + w2(x,y,t) : f(t) on B, (9)

and

•'sz = h(t) on Ba (10)

By definition

wa(Bi,t) = 0 (34)
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so that the first boundary condition, Eq. 9, can be written

w(x,y,t) wI(t) f(t) = A(t) dtdt on B, . (35)

Considering the second boundary condition, Eq. 10, where s is the

outward normal, the shear stress can be expressed in terms of

shear strain and, in turn, in terms of the axial displacement wZ and

normal displacement us resulting in

= G[ysz(t)]- G +ust- wL G)

TS a(

Taking h(t) = 0, boundary condition Eq. 10 thus reduces to

G29 ]=0 on B 2  .(37)

Eq. 37 is a nomogeneous Volterra integral equation and the only

continuous solution is zero [ 7] . Thus

-w = 0 (38)

For the mapping function used, it can be shown that

a 1 a (39)

on an internal boundary and

a 1 8 (40)

on an external boundary.
Defining B, as the outer boundary and B. as the

inner boundary, the boundary conditions in the transformed plane,

with the use of Eqs. 34, 38, and 39, become

w(t) 0 on BI (41)

and

8w?.( t 0 onB 2 . (42)
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Since these conditions are independent of time they may be applied

directly to the function i to yield

'ý = 0 on B1  (43)

and

0 onB 2 B(44)

Letting

P: I onB 1

and

P:1 3  on B ,

the unknowns H k, Lks U, and V in Eq. 33 can be evaluated with the

aid of Eqs. 43 and 44 allowing Eq. 33 to be written as

SCn (2(1-np) - 02( 1-np) - 2( 1-np)In

+ N - - k C -- C 3 2( --,(-np) 2 I-n p

+ 2--kp + A 2( 1n 2kP - 2kP ] p
+ + Zkp P- cos kp9. 45)

5. Evaluation of Displacements and Shear Stresses

Due to the form of the mapping function w( ý), Eq. 24,

an inverse is not easily; obtainable. Thus the value of : p ei9

corresponding to a given location z• - x+ i y cannot be explicitly

obtained but must be approximated. A straightforward way of evalu-

ating the expression for displacement is to perform the evaluation

of 4. and z* for a series of pt s and e' s and then use interpolation to

obtain values of displacement at specific values of z. In this manner
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the dimensionless displacement L can. be evaluated at any point for a

given geometry from Eq. 45 by specifying the C and ft. The actual

time-dependent displacement w? can then be obtained by performing

the operations indicated by Eq. 17 once the acceleration A(t) and the

creep compliance J(t) are specified.

The shear stress is somewhat more difficult to

evaluate. Since the displacements u and v in the x - y plane are zero

for a loading of axial acceleration, the shear stresses due to the

axial acceleration load are given2 by

T G [Ow(t)] ,(6
1 [.a 1 (46)

where I is any desired line lying in the z* or x - y plane. Taking the

Laplace transform of this expression with respect to time,

T p (p) (47)

the transformed shear stress can be written, with the use of Eq. 17,

as

"T z(p) = Y A(P)

or simply

T y A( t) _ (48)
I~Z al

Usually the maximum valaes of shear stress at a

point are wanted. These may be obtai-ued in the following manner.

The relation of the derivative along a line I in z*-plane to the

derivative along a corresponding line N in the ý-plane is given by

SI +(49)

In terms of the p-e coordinates

+ a' (50)
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But

a COSa (51)

and

Ssina (52)

where a is the angle between / and the p coordinate line. Substituting

Eq. 51 and Eq. 52 in Eq. 50 and maximizing with respect to a, there

results

max: (P .(3

Eqs. 48, 49, and 53 yield

2 +

max = yA(t)
I'( u) Z

The displacement function '4 has been evaluated for

the six-point, star-perforated shape shown in Fig. 2 which has been

mapped with a 50 term mapping function. The original ballistic con-

figuration is indicated by the dashed lines. The curvilinear coordi-

nates are shown over a part of the cross section, demonstrating the

slight mismatch between the true circular outer boundary and the

curvilinear coordinate. A contour map of the displacement is shown

in Fig. 3 for a step-function acceleration load, i. e., A( t) = g H(t)
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Fig. 2 Curvilinear coordinates obtained by conformal mapping.
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